MATH 102:107, CLASS 19 (FRI OCT 20)

(1) The level of pollution in a lake is dependent on the population of humans by the lake. Let $P(H)=H^{2}$ equal the amount of human-created pollution, where H is the number of humans (in thousands). Regular census-taking yields the graph of $y=H(t)$ shown at
 right. (t in years)

We would like to understand how the pollution levels change with time.
(a) Calculate $\frac{d P}{d t}$ at $t=30$.

Solution: $\frac{d P}{d t}=\frac{d P}{d H} \cdot \frac{d H}{d t}=2 H(30) H^{\prime}(30)=2(30)(-2)=-120$
(b) Calculate $\frac{d P}{d t}$ at $t=10$.

Solution: $\frac{d P}{d t}=2 H(10) H^{\prime}(10)=2(40)(1)=80$
(c) Calculate $\frac{d P}{d t}$ at $t=55$.

Solution: $\frac{d P}{d t}=2 H(55) H^{\prime}(55)=2(30)(0)=0$
(2) You want to study the survival rate of bacteria under exposure to the antibiotic Penicillin. You expose several populations of bacteria, each starting with 10^{7} cells, to different concentrations of the compound and observe the results. You would like to find a statistical model which fits the data.

$$
\begin{array}{c|c|c|c|c|c}
\text { Concentration (x) } & 2 & 3 & 4 & 5 & 6 \\
\hline \text { \# Survivors (y) } & 20000 & 1600 & 160 & 80 & 32
\end{array}
$$

(a) Why would it be a bad idea to fit the data with a line $y=a x$?

Solution: When the concentration is $x=0$, we would expect the number of survivors to be $y=10^{7}$, NOT $y=0$. As x increases, the number of survivors should decrease, NOT increase. And as the concentration goes to ∞, the number of survivors should tend to 0 , Not ∞. On all three fronts, the behavior of a line $y=a x$ with $a>0$, doesn't make sense given the real-life situation we are modeling!
One type of function which DOES line up with what we expect for the reallife situation, is exponential decay, i.e. a function of the form $y=C \cdot 10^{-a x}$
for constants C and a. In this case, we will pick $C=10^{7}$, because when $x=0$, we want $y=10^{7}$. Fitting the data above with an equation of this form, is equivalent to replacing the y-values by $-\log _{10}\left(y / 10^{7}\right)$, which we do in the next part.
(b) You instead replace the y-values with the negative logarithm of the proportion of survivors. Your table now looks like this

$$
\begin{array}{c|c|c|c|c|c}
\text { Concentration (x) } & 2 & 3 & 4 & 5 & 6 \\
\hline-\log \text { (Proportion survivors) (y) } & 2.7 & 3.8 & 4.8 & 5.1 & 5.5
\end{array}
$$

Find the slope a which gives the best-fit line $y=a x$. (You don't have to simplify your expression.)

Solution: Recall that the best-fit line minimizes the sum of the squared residuals:

$$
\begin{gathered}
S S R(a)=\left(y_{1}-a x_{1}\right)^{2}+\ldots+\left(y_{n}-a x_{n}\right)^{2} \\
S S R^{\prime}(a)=-2 x_{1}\left(y_{1}-a x_{1}\right)-\ldots-2 x_{n}\left(y_{n}-a x_{n}\right)
\end{gathered}
$$

Set this equal to zero to get

$$
a=\frac{x_{1} y_{1}+\ldots+x_{n} y_{n}}{x_{1}^{2}+\ldots+x_{n}^{2}}
$$

In our particular case, we get

$$
a=\frac{2(2.7)+3(3.8)+4(4.8)+5(5.1)+6(5.5)}{2^{2}+3^{2}+4^{2}+5^{2}+6^{2}}=\frac{21}{20}
$$

(3) (NOTE: On the in-class version of this worksheet, I made a typo. It is corrected here.) An animal is deciding what proportion of its food-gathering time, x, it should allot between two different types of food (where $0<x<1$).
(a) Suppose there are two types of food, 1 and 2, and the nutrition gained from spending x portion of time on each is $F_{1}(x)=x^{1 / 2}$ and $F_{2}(x)=N x$ for some positive constant N. What is the maximum amount of nutrition the animal can gain, and for what value of x does this happen? Your answer will depend on N.

Solution: If the animal spends x of its time on the first type of food, and $1-x$ on the second, then its total nutritional gain is $F(x)=x^{1 / 2}+N(1-x)$. Find the critical points:

$$
F^{\prime}(x)=\frac{1}{2 \sqrt{x}}-N=0 \Longrightarrow \sqrt{x}=\frac{1}{2 N} \Longrightarrow x=\frac{1}{4 N^{2}}
$$

This lies in the interval $[0,1]$ if and only if $N \geq 1 / 2$. To determine if this is a maximum, we can either plug back into $F(x)$, or calculate the second derivative. We will do the first option.

$$
F(0)=0^{1 / 2}+N(1-0)=N \quad F(1)=1^{1 / 2}+N(1-1)=1
$$

$$
F\left(1 / 4 N^{2}\right)=\frac{1}{2 N}+N\left(1-\frac{1}{4 N^{2}}\right)=N+\frac{1}{2 N}
$$

Therefore, $x=1 / 4 N^{2}$ is the maximum when $N \geq 1 / 2$, and otherwise, the maximum occurs at $x=1$.
(b) Same question, but for $F_{1}(x)=x^{2}$ and $F_{2}(x)=N x$.

Solution: Now, $F(x)=x^{2}+N(1-x)$. Find the critical points:

$$
F^{\prime}(x)=2 x-N=0 \Longrightarrow x=N / 2
$$

This is a critical point in the interval if and only if $N \leq 2$. We plus back into $F(x)$ to see if this is a maximum

$$
\begin{gathered}
F(0)=0^{2}+N(1-0)=N \quad F(1)=1^{2}+N(1-1)=1 \\
F(N / 2)=(N / 2)^{2}+N(1-N / 2)=\frac{N^{2}}{4}+N-\frac{N^{2}}{2}=N-\frac{N^{2}}{4}
\end{gathered}
$$

Therefore, this is a local minimum! Thus, the maximum value on the interval $[0,1]$ is always at $x=0$.

